+7 (925) 966 4690
ИД «Финансы и кредит»

ЖУРНАЛЫ

  

АВТОРАМ

  

ПОДПИСКА

    
«Дайджест-Финансы»
 

Включен в перечень ВАК по специальностям

ЭКОНОМИЧЕСКИЕ,
ФИЗИКО-МАТЕМАТИЧЕСКИЕ НАУКИ:
5.2.2. Математические, статистические и инструментальные методы в экономике

ЭКОНОМИЧЕСКИЕ НАУКИ:
5.2.4. Финансы
5.2.5. Мировая экономика
5.2.6. Менеджмент

Реферирование и индексирование

РИНЦ
Referativny Zhurnal VINITI RAS
Google Scholar

Электронные версии в PDF

East View Information Services
eLIBRARY.RU
Biblioclub


Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.

Data Mining Techniques: Modern Approaches to Application in Credit Scoring

т. 22, вып. 4, декабрь 2017

Получена: 04.07.2017

Получена в доработанном виде: 09.08.2017

Одобрена: 24.08.2017

Доступна онлайн: 19.12.2017

Рубрика: BANKING

Коды JEL: C38, C55, D81

Страницы: 400–412

https://doi.org/10.24891/df.22.4.400

Volkova V.S. Financial University under Government of Russian Federation, Moscow, Russian Federation 
EVolkova@fa.ru

Gisin V.B. Financial University under Government of Russian Federation, Moscow, Russian Federation 
VGisin@fa.ru

Solov'ev V.I. Financial University under Government of Russian Federation, Moscow, Russian Federation 
VSoloviev@fa.ru

Importance This article examines the current state of research in machine learning and data mining, which computational methods get combined with conventional lending models such as scoring, for instance.
Objectives The article aims to classify the modern methods of credit scoring and describe models for comparing the effectiveness of the various methods of credit scoring.
Methods To perform the tasks, we have studied relevant scientific publications on the article subject presented in Google Scholar.
Results The article presents a classification of modern data mining techniques used in credit scoring.
Conclusions and Relevance Credit scoring models using machine learning procedures and hybrid models using combined methods can provide the required level of efficiency in the modern environment.

Ключевые слова: loan scoring, credit score, machine learning, data mining

Список литературы:

  1. Durand D. Risk Elements in Consumer Installment Financing. New York, National Bureau of Economic Research Books, 1941, 163 p.
  2. Hand D.J., Henley W.E. Statistical Classification Methods in Consumer Credit Scoring: A Review. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1997, vol. 160, iss. 3, pp. 523–541. URL: Link
  3. García V., Marqués A.I., Sánchez J.S. An Insight into the Experimental Design for Credit Risk and Corporate Bankruptcy Prediction Systems. Journal of Intelligent Information Systems, 2015, vol. 44, iss. 1, pp. 159–189. URL: Link
  4. Lessmann S., Seow H.-V., Baesens B., Thomas L.C. Benchmarking State-of-the-Art Classification Algorithms for Credit Scoring: An Update of Research. European Journal of Operational Research, 2015, vol. 247, iss. 1, pp. 124–136. URL: Link
  5. Hand D.J., Kelly M.G. Superscorecards. IMA Journal of Management Mathematics, 2002, vol. 13, iss. 4, pp. 273–281.
  6. Yap B.W., Ong S.H., Husain N.H.M. Using Data Mining to Improve Assessment of Credit Worthiness via Credit Scoring Models. Expert Systems with Applications, 2011, vol. 38, iss. 10, pp. 13274–13283. URL: Link
  7. Pavlidis N.G., Tasoulis D.K., Adams N.M., Hand D.J. Adaptive Consumer Credit Classification. Journal of the Operational Research Society, 2012, vol. 63, iss. 12, pp. 1645–1654. URL: Link
  8. Khemais Z., Nesrine D., Mohamed M. Credit Scoring and Default Risk Prediction: A Comparative Study between Discriminant Analysis & Logistic Regression. International Journal of Economics and Finance, 2016, vol. 8, iss. 4, pp. 39–53. URL: Link
  9. Louzada F., Anacleto-Junior O., Candolo C., Mazucheli J. Poly-bagging Predictors for Classification Modelling for Credit Scoring. Expert Systems with Applications, 2011, vol. 38, iss. 10, pp. 12717–12720. URL: Link
  10. Li Z., Tianb Y., Li K. et al. Reject Inference in Credit Scoring Using Semi-supervised Support Vector Machines. Expert Systems with Applications, 2017, vol. 74, pp. 105–114. URL: Link
  11. Fisher R.A. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 1936, vol. 7, iss. 2, pp. 179–188. URL: Link
  12. Eisenbeis R.A. Problems in Applying Discriminant Analysis in Credit Scoring Models. Journal of Banking & Finance, 1978, vol. 2, iss. 3, pp. 205–219. URL: Link90012-2
  13. Mylonakis J., Diacogiannis G. Evaluating the Likelihood of Using Linear Discriminant Analysis as a Commercial Bank Card Owners Credit Scoring Model. International Business Research, 2010, vol. 3, no. 2, pp. 9–20. URL: Link
  14. Akkoç S. An Empirical Comparison of Conventional Techniques, Neural Networks and the Three Stage Hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) Model for Credit Scoring Analysis: The Case of Turkish Credit Card Data. European Journal of Operational Research, 2012, vol. 222, iss. 1, pp. 168–178. URL: Link
  15. Falangis K., Glen J.J. Heuristics for Feature Selection in Mathematical Programming Discriminant Analysis Models. Journal of the Operational Research Society, 2010, vol. 61, no. 5, pp. 804–812. URL: Link
  16. Breiman L., Friedman J., Stone C.J., Olshen R.A. Classification and Regression Trees. Monterey, CA, Wadsworth & Brooks/Cole Advanced Books & Software, 1984, 368 p.
  17. Loh W.-Y. Fifty Years of Classification and Regression Trees. International Statistical Review, 2014, vol. 82, iss. 3, pp. 329–348. URL: Link
  18. Finlay S. Multiple Classifier Architectures and Their Application to Credit Risk Assessment. European Journal of Operational Research, 2011, vol. 210, iss. 2, pp. 368–378. URL: Link
  19. Zhang D., Zhou X., Leung S.C.H., Zheng J. Vertical Bagging Decision Trees Model for Credit Scoring. Expert Systems with Applications, 2010, vol. 37, iss. 12, pp. 7838–7843. URL: Link
  20. Hu Q., Che X., Zhang L. et al. Rank Entropy-Based Decision Trees for Monotonic Classification. IEEE Transactions on Knowledge and Data Engineering, 2012, vol. 24, iss. 11, pp. 2052–2064. URL: Link
  21. Hayashi Y., Tanaka Y., Takagi T. et al. Recursive-Rule Extraction Algorithm with J48graft and Applications to Generating Credit Scores. Journal of Artificial Intelligence and Soft Computing Research, 2016, vol. 6, iss. 1, pp. 35–44. URL: Link
  22. Vapnik V.N. Statistical Learning Theory. New York, John Wiley, 1998, 768 p.
  23. Bellotti T., Crook J. Support Vector Machines for Credit Scoring and Discovery of Significant Features. Expert Systems with Applications, 2009, vol. 36, iss. 2-2, pp. 3302–3308. URL: Link
  24. Chen W., Ma C., Ma L. Mining the Customer Credit Using Hybrid Support Vector Machine Technique. Expert Systems with Applications, 2009, vol. 36, iss. 4, pp. 7611–7616. URL: Link
  25. Ling Y., Cao Q., Zhang H. Credit Scoring Using Multi-Kernel Support Vector Machine and Chaos Particle Swarm Optimization. International Journal of Computational Intelligence and Applications, 2012, vol. 11, iss. 3, pp. 12500198:1–12500198:13.
  26. Friedman N., Geiger D., Goldszmidt M. Bayesian Network Classifiers. Machine Learning, 1997, vol. 29, iss. 2-3, pp. 131–163. URL: Link
  27. Pearl J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, 1988, 552 p.
  28. Giudici P. Bayesian Data Mining, with Application to Benchmarking and Credit Scoring. Applied Stochastic Models in Business and Industry, 2001, vol. 17, iss. 1, pp. 69–81. URL: Link
  29. Gemela J. Financial Analysis Using Bayesian Networks. Applied Stochastic Models in Business and Industry, 2001, vol. 17, iss. 1, pp. 57–67. URL: Link
  30. Antonakis A.C., Sfakianakis M.E. Naïve Bayes as a Means of Constructing Application Scorecards. In: L. Moutinho and K.-H. Huarng (eds), Advances in Doctoral Research in Management. Singapore, World Scientific Publishing Co. Pte. Ltd, 2008, vol. 2, pp. 47–62.
  31. Antonakis A.C., Sfakianakis M.E. Assessing Naïve Bayes as a Method for Screening Credit Applicants. Journal of Applied Statistics, 2009, vol. 36, iss. 5-6, pp. 537–545. URL: Link
  32. Wu W.-W. Improving Classification Accuracy and Causal Knowledge for Better Credit Decisions. International Journal of Neural Systems, 2011, vol. 21, iss. 4, pp. 297–309. URL: Link
  33. Zhu H., Beling P.A., Overstreet G.A. A Bayesian Framework for the Combination of Classifier Outputs. Journal of the Operational Research Society, 2002, vol. 53, iss. 7, pp. 719–727. URL: Link
  34. West D. Neural Network Credit Scoring Models. Computers & Operations Research, 2000, vol. 27, iss. 11-12, pp. 1131–1152. URL: Link00149-5
  35. Ong C.-S., Huang J.-J., Tzeng G.-H. Building Credit Scoring Models Using Genetic Programming. Expert Systems with Applications, 2005, vol. 29, iss. 1, pp. 41–47. URL: Link
  36. Breiman L. Bagging Predictors. Machine Learning, 1996, vol. 24, iss. 2, pp. 123–140. URL: Link
  37. Wolpert D.H. Stacked Generalization. Neural Networks, 1992, vol. 5, no. 2, pp. 241–259.
  38. Vukovic S., Delibašić B., Uzelac A., Suknovic M. A Case-Based Reasoning Model That Uses Preference Theory Functions for Credit Scoring. Expert Systems with Applications, 2012, vol. 39, iss. 9, pp. 8389–8395. URL: Link
  39. Marqués A.I., García V., Sánchez J.S. Two-Level Classifier Ensembles for Credit Risk Assessment. Expert Systems with Applications, 2012, vol. 39, iss. 12, pp. 10916–10922. URL: Link
  40. Hoffmann F., Baesens B., Mues C. et al. Inferring Descriptive and Approximate Fuzzy Rules for Credit Scoring Using Evolutionary Algorithms. European Journal of Operational Research, 2007, vol. 177, iss. 1, pp. 540–555. URL: Link
  41. Ignatius J., Hatami-Marbini A., Rahman A. et al. A Fuzzy Decision Support System for Credit Scoring. Neural Computing and Applications, 2016, vol. 27, no. 1, pp. 1–17. URL: Link
  42. Lahsasna A., Ainon R.N., Wah T.Y. Credit Risk Evaluation Decision Modeling Through Optimized Fuzzy Classifier. Proc. International Symposium on Information Technology, 2008. IEEE, 2008, vol. 1, pp. 1–8.
  43. Kaur A. et al. Fuzzy Rule-based Expert System for Evaluating Defaulter Risk in Banking Sector. Indian Journal of Science and Technology, 2016, vol. 9, iss. 28, pp. 1–6. URL: Link
  44. Malhotra R., Malhotra D.K. Differentiating Between Good Credits and Bad Credits Using Neuro-Fuzzy Systems. European Journal of Operational Research, 2002, vol. 136, iss. 1, pp. 190–211. URL: Link00052-2
  45. Clemen R.T., Murphy A.H., Winkler R.L. Screening Probability Forecasts: Contrasts Between Choosing and Combining. International Journal of Forecasting, 1995, vol. 11, iss. 1, pp. 133–145. URL: Link02007-C
  46. DeGroot M.H., Fienberg S.E. The Comparison and Evaluation of Forecasters. Journal of the Royal Statistical Society. Series D (The Statistician), 1983, vol. 32, no. 1/2, pp. 12–22. Stable URL: Link
  47. DeGroot M.H., Eriksson E.A. Probability Forecasting, Stochastic Dominance, and the Lorenz Curve. J.M. Bernardo, M.H. DeGroot, D.V. Lindley and A.F.M. Smith (eds). Amsterdam, North-Holland, Bayesian Statistics, 1985, vol. 2, pp. 99–118.

Посмотреть другие статьи номера »

 

ISSN 2311-9438 (Online)
ISSN 2073-8005 (Print)

Свежий номер журнала

т. 29, вып. 3, сентябрь 2024

Другие номера журнала