Яшин С.Н.доктор экономических наук, профессор, заведующий кафедрой менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация jashinsn@yandex.ru https://orcid.org/0000-0002-7182-2808 SPIN-код: 4191-7293
Трифонов Ю.В.доктор экономических наук, профессор, заведующий кафедрой информационных технологий и инструментальных методов в экономике, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация kei@ef.unn.ru https://orcid.org/0000-0002-4745-0004 SPIN-код: 4394-4681
Кошелев Е.В.кандидат экономических наук, доцент кафедры менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация ekoshelev@yandex.ru https://orcid.org/0000-0001-5290-7913 SPIN-код: 8429-5702
Предмет. Использование цифровых двойников для управления инновационно-индустриальными кластерами и их взаимодействия. Цели. Предложить модель создания и отладки цифрового двойника межкластерного взаимодействия. Методология. Использованы общенаучные методы. Произведены выбор и корректировка параметров цифрового двойника, построение и отладка его модели, а также алгоритма имитационного моделирования. Результаты. В качестве наиболее важных направлений межкластерного взаимодействия предложены экономико-финансовое, информационное и логистическое, а в качестве основной характеристики успешности взаимодействия — естественный прирост населения. Выводы. Использование цифрового двойника механизма межкластерного взаимодействия позволит избежать необоснованных управленческих решений. Для Приволжского федерального округа справедлив вывод о том, что увеличение инвестиций в основной капитал не всегда приводит к росту численности населения. Население интересует прежде всего рост его доходов. Это необходимо учитывать при перераспределении инвестиционных и человеческих ресурсов.
Яшин С.Н., Кошелев Е.В., Костригин Р.В. Составление линейного функционала ценности инновационно-индустриального кластера для региона // Управление экономическими системами: электронный научный журнал. 2019. № 12. URL: Link
Uhlemann T.H.-J., Schock C., Lehmann C. et al. The Digital Twin. Demonstrating the Potential of Real Time Data Acquisition in Production Systems. Procedia Manufacturing, 2017, no. 9, pp. 113–120. URL: Link
Negri E., Fumagalli L., Macchi M. A Review of the Roles of Digital Twin in CPS-based Production Systems. Procedia Manufacturing, 2017, vol. 11, pp. 939–948. URL: Link
Lee J., Bagheri B., Kao H.-A. A Cyber-Physical Systems Architecture for Industry 4.0-based Manufacturing Systems. Manufacturing Letters, 2015, no. 3, pp. 18–23. URL: Link
Boschert S., Rosen R. Digital Twin – The Simulation Aspect. In: Hehenberger P., Bradley D. (eds) Mechatronic Futures. Cham, Springer International Publishing, 2016, pp. 59–74. URL: Link
Tao F., Cheng J., Qi Q. et al. Digital Twin-driven Product Design, Manufacturing and Service with Big Data. The International Journal of Advanced Manufacturing Technology, 2018, vol. 94, pp. 3563–3576. URL: Link
Rosen R., von Wichert G., Lo G., Bettenhausen K.D. About the Importance of Autonomy and Digital Twins for the Future of Manufacturing. IFAC-PapersOnLine, 2015, vol. 48, iss. 3, pp. 567–572. URL: Link
Grieves M., Vickers J. Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. In: Kahlen F.-J., Flumerfelt S., Alves A. (eds) Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, Cham, Springer International Publishing, 2017, pp. 85–113. URL: Link
Kuhn T. Digitaler Zwilling. Informatik-Spektrum, 2017, vol. 40, pp. 440–444. URL: Link
Garetti M., Rosa P., Terzi S. Life Cycle Simulation for the Design of Product-Service Systems. Computers in Industry, 2012, vol. 63, iss. 4, pp. 361–369. URL: Link
Lee J., Lapira E., Bagheri B., Kao H.-A. Recent Advances and Trends in Predictive Manufacturing Systems in Big Data Environment. Manufacturing Letters, 2013, vol. 1, iss. 1, pp. 38–41. URL: Link
Лопатин А.С. Метод отжига // Стохастическая оптимизация в информатике. 2005. Т. 1. № 1. С. 133—149. URL: Link
Ingber L., Rosen B. Genetic Algorithms and Very Fast Simulated Reannealing: A Comparison. Mathematical and Computer Modelling, 1992, vol. 16, iss. 11, pp. 87–100. URL: Link90108-W
Kirkpatrick S., Gelatt C.D. Jr., Vecchi M.P. Optimization by Simulated Annealing. Readings in Computer Vision. Issues, Problem, Principles, and Paradigms, 1987, pp. 606–615. URL: Link
Metropolis N., Rosenbluth A.W., Rosenbluth M.N. et al. Equation of State Calculations by Fast Computer Machines. The Journal of Chemical Physics, 1953, vol. 21, iss. 6, pp. 1087–1092. URL: Link
Тихомиров А.С. О быстрых вариантах алгоритма отжига (Simulated Annealing) // Стохастическая оптимизация в информатике. 2009. Т. 5. №1. С. 65—90. URL: Link
Szu H., Hartley R. Fast Simulated Annealing. Physics Letters A, 1987, vol. 122, iss. 3-4, pp. 157–162. URL: Link90796-1
Ingber L. Very Fast Simulated Re-Annealing. Mathematical and Computer Modelling, 1989, vol. 12, iss. 8, pp. 967–973. URL: Link90202-1
Yao X. A New Simulated Annealing Algorithm. International Journal of Computer Mathematics, 1995, vol. 56, iss. 3-4, pp. 161–168. URL: Link
Ingber L. Simulated Annealing: Practice versus Theory. Mathematical and Computer Modelling, 1993, vol. 18, iss. 11, pp. 29–57. URL: Link90204-C
Ingber L. Adaptive Simulated Annealing (ASA): Lessons Learned. Control and Cybernetics, 1996, vol. 25, no. 1, pp. 33–54. URL: Link
Damodaran A. Investment Valuation: Tools and Techniques for Determining the Value of Any Asset. New York, John Wiley & Sons, Inc., 2002, 992 p.