Яшин С.Н.доктор экономических наук, профессор, заведующий кафедрой менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация jashinsn@yandex.ru https://orcid.org/0000-0002-7182-2808 SPIN-код: 4191-7293
Кошелев Е.В.кандидат экономических наук, доцент кафедры менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация ekoshelev@yandex.ru https://orcid.org/0000-0001-5290-7913 SPIN-код: 8429-5702
Предмет. Мотивация топ-менеджеров государственных структур в приведении в соответствие интересов населения, государства и его топ-менеджеров. Цели. Создание модели мотивации топ-менеджмента госструктур регионов, ставящей нематериальную мотивацию в зависимость от достигнутого стратегического потенциала региона. Методология. Использован многоцелевой генетический алгоритм, Парето-фронт. Результаты. Для каждой из трех целей в конкретном регионе сравниваются последние фактические значения исследуемых девяти факторов с ближайшими плановыми (оптимальными) значениями Парето-фронта. Положительное отклонение от оптимума оценивается позитивно, что позволяет дополнительно поощрять топ-менеджеров материально либо нематериально. Отрицательное отклонение свидетельствует о принятии ими в прошлом некачественных управленческих решений. Выводы. Результаты могут быть полезны государственным структурам для разработки рациональной системы материальной и нематериальной мотивации топ-менеджеров.
Khytrova O.A., Sysoieva I.M., Dolha H.V. et al. Ensuring the Growth of Enterprises and Organizations Through the Motivation of Managerial Staff. International Journal of Economics and Business Administration, 2020, vol. 8, iss. 2, pp. 219–228. URL: Link
Munna A.S. Strategic Management, Leadership and Staff Motivation: Literature Review. International Education and Culture Studies, 2021, vol. 1, iss. 1, pp. 21–29. URL: Link
Dogar M.N. Breach of Psychological Contract: Impact on Workforce Motivation and Organizational Sustainability. Emerald Emerging Markets Case Studies, 2020, vol. 10, no. 1. URL: Link
Kampf R., Lorincova S., Kapustina L.M., Lizbetinova L. Motivation Level and its Comparison Between Senior Managers and Blue-Collar Workers in Small and Medium-Sized Transport Enterprises. Communications – Scientific Letters of the University of Zilina, 2017, vol. 19, no. 4, pp. 43–49. URL: Link
Schwarz G., Eva N., Newman A. Can Public Leadership Increase Public Service Motivation and Job Performance? Public Administration Review, 2020, vol. 80, iss. 4, pp. 543–554. URL: Link
Long Q., Wu Ch., Wang X. et al. A Multiobjective Genetic Algorithm Based on a Discrete Selection Procedure. Mathematical Problems in Engineering, 2015, vol. 2015, 17 p. URL: Link
Fita A. Three-Objective Programming with Continuous Variable Genetic Algorithm. Applied Mathematics, 2014, vol. 5, no. 21, pp. 3297–3310. URL: Link
Khan A., Baig A.R. Multi-Objective Feature Subset Selection using Non-dominated Sorting Genetic Algorithm. Journal of Applied Research and Technology, 2015, vol. 13, no. 1, pp. 145–159. URL: Link30013-4
Das S., Chaudhuri Sh., Das A.K. Optimal Set of Overlapping Clusters Using Multi-objective Genetic Algorithm. ICMLC 2017: Proceedings of the 9th International Conference on Machine Learning and Computing, 2017, pp. 232–237. URL: Link
Li B., Jin B.-F. Research on Dynamic Multi-objective FJSP Based on Genetic Algorithm. 2018 IEEE 16th Int Conf on Dependable, Autonomic and Secure Computing, 16th Int Conf on Pervasive Intelligence and Computing, 4th Int Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress, 2018, pp. 347–352. URL: Link
Thananant V., Auwatanamongkol S. Supervised Clustering based on a Multi-objective Genetic Algorithm. Pertanika Journal of Science & Technology, 2019, vol. 27, iss. 1, pp. 81–121. URL: Link
Sardaraz M., Tahir M. A Parallel Multi-objective Genetic Algorithm for Scheduling Scientific Workflows in Cloud Computing. International Journal of Distributed Sensor Networks, 2020, vol. 16, iss. 8. URL: Link
Wang J., Liu Sh., Li M. et al. Multiobjective Genetic Algorithm Strategies for Burnable Poison Design of Pressurized Water Reactor. International Journal of Energy Research, 2021, vol. 45, iss. 8, pp. 11930–11942. URL: Link
Maghawry A., Hodhod R., Omar Y., Kholief M. An Approach for Optimizing Multi-objective Problems Using Hybrid Genetic Algorithms. Soft Computing, 2021, vol. 25, pp. 389–405. URL: Link
Nikseresht M., Raji M. MOGATS: A Multi-objective Genetic Algorithm-based Task Scheduling for Heterogeneous Embedded Systems. International Journal of Embedded Systems, 2021, vol. 14, iss. 2, pp. 171–184. URL: Link
Vasant P. A Novel Hybrid Genetic Algorithms and Pattern Search Techniques for Industrial Production Planning. International Journal of Modeling, Simulation, and Scientific Computing, 2012, vol. 03, no. 04. URL: Link
Baeyens E., Herreros A., Perán J.R. A Direct Search Algorithm for Global Optimization. Algorithms, 2016, vol. 9, iss. 2, p. 40. URL: Link
Guariso G., Sangiorgio M. Improving the Performance of Multiobjective Genetic Algorithms: An Elitism-Based Approach. Information, 2020, vol. 11, iss. 12, p. 587. URL: Link
Yashin S., Koshelev E., Tsymbalov S. et al. Assessment of Material and Intangible Motivation of Top Management in Regions Using Multipurpose Genetic Algorithm. Proceedings of the International Conference Digital Age: Traditions, Modernity and Innovations (ICDATMI 2020), 2020, vol. 489, pp. 33–39. URL: Link