Григорович А.В.кандидат экономических наук, доцент кафедры экономической безопасности, финансов и бухгалтерского учета, Российский университет кооперации (РУК), Мытищи, Московская область, Российская Федерация a_kozhanova@bk.ru https://orcid.org/0000-0002-5892-0841 SPIN-код: 5137-8705
Предмет. Модели определения финансовой устойчивости малых и средних предприятий (МСП) к дефолту. Цели. Поиск в отечественной и зарубежной экономической литературе наиболее точной модели для предсказания вероятности дефолта российских МСП, а также разработка новой модели на актуальной базе данных финансовых показателей, полученных из открытых источников. Методология. Использован метод логистической регрессии, программа SPSS. Анализ финансовых показателей и коэффициентов, динамики их развития, нефинансовых показателей деятельности на базе 49 268 российских МСП. Результаты. Разработана шестифакторная логит-модель оценки вероятности дефолта за год до его наступления, показавшая наиболее высокую точность предсказания в сравнении с имеющимися в литературе моделями. Выводы. Представленная логит-модель за счет широкой аналитической базы, высокой точности предсказания, легкости использования и интерпретации результатов подходит для широкого круга пользователей, желающих инвестировать в российские МСП.
Birch D.L., Medoff J. Gazelles. In: Labor Markets, Employment Policy and Job Creation. New York, Routledge, 1995, pp. 159–167.
Hill J. FinTech and the Remaking of Financial Institutions. Academic Press, 2018.
Akhtar S., Liu Y. SME Managers and Financial Literacy: Does Financial Literacy Really Matter? Journal of Public Administration and Governance, 2018, vol. 8, no. 3, pp. 353–373. URL: Link
Kaili E., Psarrakis D., Van Hoinaru R. (ed.). New Models of Financing and Financial Reporting of European SMEs. Springer Nature, Switzerland AG, 2019. URL: Link
Kaygin C.Y., Tazegül A., Yazarkan H. Estimation Capability of Financial Failures and Successes of Enterprises Using Data Mining and Logistic Regression Analysis. Ege Academic Review, 2016, vol. 16, iss. 1, pp. 147–159. URL: Link
Lawrence K.D., Pai D.R., Kleinman G. Bankruptcy Prediction in Retail Industry Using Logistic Regression. In: Lawrence K.D., Kleinman G. (ed.) Financial Modeling Applications and Data Envelopment Applications (Applications of Management Science, vol. 13). Leeds, Emerald Group Publishing Limited, 2009, pp. 61–69. URL: Link0000013006
Fedorova E.A., Dovzhenko S.E., Fedorov F.Yu. Bankruptcy Prediction Models for Russian Enterprises: Specific Sector-Related Characteristics. Studies on Russian Economic Development, 2016, vol. 27, pp. 254–261. URL: Link
Altman E.I., Hartzell J., Peck M. Emerging Market Corporate Bonds – A Scoring System. In: Levich R.M. (ed.) Emerging Market Capital Flows. The New York University Salomon Center Series on Financial Markets and Institutions, vol. 2. Boston, Springer, 1998, pp. 391–400. URL: Link
Becchetti L., Sierra J. Bankruptcy Risk and Productive Efficiency in Manufacturing Firms. Journal of Banking and Finance, 2003, vol. 27, iss. 11, pp. 2099–2120. URL: Link00319-9
Zeitun R., Tian G., Keen K. Default Probability for the Jordanian Companies: A Test of Cash Flow Theory. International Research Journal of Finance and Economics, 2007, vol. 8, pp. 147–162. URL: Link
Xie C., Luo C., Yu X. Financial Distress Prediction Based on SVM and MDA Methods: The Case of Chinese Listed Companies. Quality and Quantity, 2011, vol. 45, pp. 671–686. URL: Link
Xu W., Xiao Z., Dang X. et al. Financial Ratio Selection for Business Failure Prediction Using Soft Set Theory. Knowledge-Based Systems, 2014, vol. 63, pp. 59–67. URL: Link
Kasgari A.A., Divsalar M., Javid M.R., Ebrahimian S.J. Prediction of Bankruptcy Iranian Corporations Through Artificial Neural Network and Probit-Based Analyses. Neural Computing and Applications, 2012, vol. 23, pp. 927–936. URL: Link
Lugovskaya L. Predicting Default of Russian SMEs on the Basis of Financial and Non-Financial Variables. Journal of Financial Services Marketing, 2010, no. 14, pp. 301–313. URL: Link
Ohlson J.A. Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 1980, vol. 18, no. 1, pp. 109–131. URL: Link
Cohen S., Costanzo A., Manes-Rossi F. Auditors and Early Signals of Financial Distress in Local Governments. Managerial Auditing Journal, 2017, vol. 32, no. 3, pp. 234–250. URL: Link
Altman E.I., Sabato G. Modelling Credit Risk for SMEs: Evidence from the U.S. Market. Abacus, 2007, vol. 43, iss. 3, pp. 332–357. URL: Link
Alaminos D., del Castillo A., Fernandez M.A. A Global Model for Bankruptcy Prediction. PLoS ONE, 2016, vol. 11, iss. 11. URL: Link
Makeeva E.Y., Khugaeva M.O. Evaluation of Financial Distress Costs of Innovative Companies. Russian Management Journal, 2018, vol. 16, iss. 1, pp. 37–62. URL: Link
Calabrese R., Marra G., Osmetti S.A. Bankruptcy Prediction of Small and Medium Enterprises Using a Flexible Binary Generalized Extreme Value Model. Journal of the Operational Research Society, 2016, vol. 67, no. 4, pp. 604–615. URL: Link
Ciampi F., Gordini N. Small Enterprise Default Prediction Modeling Through Artificial Neural Networks: An Empirical Analysis of Italian Small Enterprises. Journal of Small Business Management, 2013, vol. 51, iss. 1, pp. 23–45. URL: Link
Kim S.Y. Prediction of Hotel Bankruptcy Using Support Vector Machine, Artificial Neural Network, Logistic Regression, and Multivariate Discriminant Analysis. The Service Industries Journal, 2011, vol. 31, iss. 3, pp. 441–468. URL: Link
Monelos P.E., Sanchez C.P., Lopez M.R. Prediccion del fracaso empresarial: Una contribucion a la síntesis de una teoría mediante el analisis comparativo de distintas tecnicas de prediccion. Estudios de Economía, 2016, vol. 43, no. 2, pp. 163–198. URL: Link