Яшин С.Н.доктор экономических наук, профессор, заведующий кафедрой менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация jashinsn@yandex.ru https://orcid.org/0000-0002-7182-2808 SPIN-код: 4191-7293
Кошелев Е.В.кандидат экономических наук, доцент кафедры менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация ekoshelev@yandex.ru https://orcid.org/0000-0001-5290-7913 SPIN-код: 8429-5702
Иванов А.А.кандидат экономических наук, доцент кафедры менеджмента и государственного управления, Национальный исследовательский Нижегородский государственный университет имени Н.И. Лобачевского (ННГУ), Нижний Новгород, Российская Федерация alexey.iff@yandex.ru https://orcid.org/0000-0003-4299-4042 SPIN-код: 1055-4483
Предмет. Планирование программ инновационного развития отрасли радиоэлектронной промышленности (РЭП). Цели. Моделирование одновременного инвестиционного, производственного и финансового планирования программ инновационного развития отрасли РЭП. Методология. Использованы общенаучные методы. Результаты. Применение трехцелевого генетического алгоритма (MGA) для моделирования одновременного инвестиционного, производственного и финансового планирования программ инновационного развития отрасли РЭП позволяет получить достаточно подробное представление о перспективах развития регионов с отраслью РЭП, поскольку в этом случае максимизируются одновременно сразу три целевые функции. В результате получается набор решений в виде Парето-фронта, что упрощает подбор плановых входных параметров модели. Поскольку имитационный отжиг (SA) и поиск по шаблону (PS) конкурируют в своих результатах с генетическим алгоритмом, результаты MGA дополняются решениями, полученными с помощью алгоритмов SA и PS. Но при этом алгоритмы SA и PS позволят оптимизировать три целевые функции по отдельности, а MGA — оптимизировать сразу три цели одновременно и получить при этом на трехмерном Парето-фронте близкие к фактическим значениям функций целевые точки. Выводы. Полученные результаты могут быть полезны государственным структурам и частным инвесторам для инвестиционного, производственного и финансового планирования инновационного развития отрасли РЭП.
Shi W.L. Industrial Electronics: Its Importance in the Manufacturing Industries. Journal of Industrial Electronics and Applications, 2023, vol. 7, iss. 1.
Балычев С.Ю., Батьковский М.А., Кравчук П.В., Судаков В.А. Оптимизация программ диверсификации предприятий радиоэлектронной промышленности // Наука без границ. 2020. № 2. С. 27—32. URL: Link
Chen W., Huang X., Liu Y., Song Y. Does Industry Integration Improve the Competitiveness of China’s Electronic Information Industry? – Evidence from the Integration of the Electronic Information Industry and Financial Industry. Sustainability, 2019, vol. 11, iss. 9. URL: Link
Selcuklu S.B. Multi-objective Genetic Algorithms. In: Kulkarni A.J., Gandomi A.H. (eds) Handbook of Formal Optimization. Singapore, Springer, 2023. URL: Link
Mangai G.A., Leelavathy T. A Binary Coded Genetic Algorithm for Multi Objective Routing Problem. AIP Conference Proceedings, 2023, vol. 2852, iss. 1. URL: Link
Li J.-Y., Zhan Z.-H., Li Y., Zhang J. Multiple Tasks for Multiple Objectives: A New Multiobjective Optimization Method via Multitask Optimization. In: IEEE Transactions on Evolutionary Computation, 2023. URL: Link
Wang P., Ye K., Hao X., Wang J. Combining Multi-objective Genetic Algorithm and Neural Network Dynamically for the Complex Optimization Problems in Physics. Scientific Reports, 2023, vol. 13. URL: Link
Lahlouh I., Khouili D., Elakkary A., Sefiani N. Pareto Optimality Based Multi-objective Genetic Algorithm: Application for Livestock Building System Using an Independent PID Controller. Engineering and Applied Science Research, 2021, vol. 48, no. 1, pp. 83–91. URL: Link
Ngo S.T., Jafreezal J., Nguyen G.H., Bui A.N. A Genetic Algorithm for Multi-Objective Optimization in Complex Course Timetabling. Proceedings of the 2021 10th International Conference on Software and Computer Applications (ICSCA '21), 2021, pp. 229–237. URL: Link
Yulia F., Chairina I., Zulys A., Nasruddin. Multi-objective Genetic Algorithm Optimization with an Artificial Neural Network for CO2/CH4 Adsorption Prediction in Metal–organic Framework. Thermal Science and Engineering Progress, 2021, vol. 25, 100967. URL: Link
Van Ho H., Nguyen T.H., Ho L.H. et al. Upgrading Urban Drainage Systems for Extreme Rainfall Events Using Multi-objective Optimization: Case Study of Tan Hoa-Lo Gom Drainage Catchment, HCMC, Vietnam. In: Kim J.H., Deep K., Geem Z.W. et al. (eds) Proceedings of the 7th International Conference on Harmony Search, Soft Computing and Applications. Lecture Notes on Data Engineering and Communications Technologies. Singapore, Springer, 2022, vol. 140. URL: Link
Zanin P.S. Jr., Garces Negrete L.P., Brigatto G.A.A., Lopez-Lezama J.M. A Multi-Objective Hybrid Genetic Algorithm for Sizing and Siting of Renewable Distributed Generation. Applied Sciences, 2021, vol. 11, iss. 16. URL: Link
Giri J.M. Simulated Annealing and Its Applications to Mechanical Engineering: A Review. International Journal of Innovative Research in Computer Science & Technology, 2023, vol. 11, special iss. 1. URL: Link
Lou S., Xin J., Zhu J., Wang X. Application of Simulated Annealing Neural Network in Performance Evaluation of Science and Technology Innovation Community. 2020 Chinese Control and Decision Conference (CCDC). China, Hefei, 2020, pp. 4157–4162. URL: Link
Kallab C., Haddad S., Sayah J., Chakroun M. Generic Simulated Annealing. Open Journal of Applied Sciences, 2022, vol. 12, no. 6, pp. 1011–1025. URL: Link
Guilmeau T., Chouzenoux E., Elvira V. Simulated Annealing: A Review and a New Scheme. 2021 IEEE Statistical Signal Processing Workshop (SSP). Brazil, Rio de Janeiro, 2021, pp. 101–105. URL: Link
Neri F., Rostami S. Generalised Pattern Search Based on Covariance Matrix Diagonalisation. SN Computer Science, 2021, vol. 2, iss. 171. URL: Link
Theodorakatos N.P., Lytras M., Babu R. A Generalized Pattern Search Algorithm Methodology for Solving an Under-Determined System of Equality Constraints to Achieve Power System Observability Using Synchrophasors. Journal of Physics: Conference Series, 2021, vol. 2090. URL: Link
Cuevas E., Becerra H., Escobar H. et al. Search Patterns Based on Trajectories Extracted from the Response of Second-Order Systems. Applied Sciences, 2021, vol. 11, iss. 8. URL: Link
Raghava M., Rambabu B., Dattatreya V. Hooke and Jeeves Pattern Search Method and Global Optimal Solution. CVR Journal of Science and Technology, 2019, vol. 17, pp. 67–72. URL: Link