Гальперова Е.В.кандидат технических наук, доцент, ведущий научный сотрудник отдела взаимосвязей энергетики и экономики, Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения РАН galper@isem.sei.irk.ru
Кононов Д.Ю.кандидат технических наук, старший научный сотрудник отдела взаимосвязей энергетики и экономики, Институт систем энергетики им. Л.А. Мелентьева Сибирского отделения РАН dima@isem.sei.irk.ru
Статья посвящена проблеме учета неопределенности исходной информации при долгосрочном прогнозировании потребности в энергоресурсах. Долгосрочные прогнозы возможной динамики спроса на энергоносители являются необходимыми и первоочередными этапами разработки программ и стратегий развития энергетики и экономики страны и регионов и служат важными ориентирами для принятия инвестиционных решений в топливно-энергетическом комплексе. Усложнение взаимосвязей экономики и топливно-энергетического комплекса, изменение методов управления, переход к рыночным отношениям, повышение роли ценового фактора ведут к росту неопределенности будущего развития страны и территорий и неоднозначности перспективного спроса на энергоресурсы. В работе описывается разработанный модельно-программный комплекс, состоящий из семейства имитационных стохастических статических моделей (МИСС) укрупненных групп потребителей для разных регионов страны, который позволяет оценить влияние неоднозначности, используемой при долгосрочном прогнозировании информации, на перспективные показатели энергоснабжения региона. Особенностью входящих в комплекс моделей является совместное использование методов оптимизации и статистических испытаний (метод Монте-Карло), первый из которых используется для выбора рациональной структуры топливоснабжения потребителей, второй - для учета неопределенности будущих условий. Кроме того, особенности подхода позволяют задавать перспективные технико-экономические, ценовые и др. показатели в виде интервалов возможных значений с разной степенью вероятности их реализации в этих интервалах. В статье приводятся результаты экспериментальных расчетов для некоторых укрупненных регионов Российской Федерации в предполагаемых условиях топливоснабжения в 2020 г., а также рассматривались интервальная (полная) неопределенность исходных данных, нормальное распределение вероятности внутри интервала неопределенности и детерминированные (однозначные) значения. Показано влияние вероятности реализации показателей внутри интервалов на изменение эффективных объемов спроса на газ для новых электростанций и крупных котельных и на неопределенность стоимости производства электрической и тепловой энергии. Представляется, что учет фактора неопределенности исходной информации при определении прогнозных объемов энергопотребления должен способствовать повышению обоснованности долгосрочных прогнозов развития топливно-энергетического комплекса страны и регионов.
Антонов Н., Лукина Е. Методические подходы к прогнозированию электропотребления// Энергорынок. 2013. № 9. С. 32–39
Беляев Л.С. Решение сложных оптимизационных задач в условиях неопределенности. Новосибирск: Наука, Сиб. отделение, 1978. 128 с.
Волконский В.А., Кузовкин А.И. О регулировании цен на энергоресурсы // Проблемы прогнозирования. 2014. № 2. С. 18–32.
Гальперова Е.В., Кононов Ю.Д., Мазурова О.В. Прогнозирование спроса на энергоносители в регионе с учетом их стоимости // Регион. 2008. № 3. С. 207–219.
Гальперова Е.В., Кононов Д.Ю., Тыртышный В.Н. Комплекс моделей для долгосрочного прогнозирования конъюнктуры региональных энергетических рынков // Труды XIX Байкальской Всероссийской конференции «Информационные и математические технологии в науке и управлении». Ч. I. Иркутск: ИСЭМ СО РАН, 2014. С. 14–21.
Ермаков С.М. Метод Монте-Карло и смежные вопросы. М.: Наука, 1975. 472 с.
Кононов Ю.Д. Анализ и прогноз возможной динамики цен на топливо на мировых и российских рынках. Иркутск: ИСЭМ СО РАН, 2013. 30 с.
Кононов Ю.Д., Кононов Д.Ю. Долгосрочное прогнозирование динамики цен на российских энергетических рынках // Проблемы прогнозирования. 2005. № 6. С. 53–59.
Кононов Ю.Д. Поэтапный подход к повышению обоснованности долгосрочных прогнозов развития ТЭК и к оценке стратегических угроз// Известия РАН. Сер. Энергетика. 2014. № 2. С. 61–68.
Куленов Н. С., Хасенов Ж.Х. Прогнозирование энергопотребления. Алма-Ата: Наука, 1980. 138 с.
Магалимов И.В. Методика прогнозирования потребности в энергоресурсах в отраслях народного хозяйства // Теплоэнергетика. 2002. № 10. С. 73–77.
Малахов В.А. Подходы к прогнозированию спроса на электроэнергию в России // Проблемы прогнозирования. 2009. № 2. С. 57–62.
Медведева Е.А. Технологические уклады и энергопотребление. Иркутск: СЭИ СО РАН, 1994. 250 с.
Медведева Е.А., Никитин В.М. Энергопотребление и уровень жизни. Новосибирск: Наука. Сиб. отделение, 1991. 137 с.
Полыгалов А.С., Порохова Н.В., Саакян Ю.З. Модель предельных цен инфраструктурных отраслей // Проблемы прогнозирования. 2012. № 5. С. 61–71.
Подковальников С.В. Нечеткая платежная матрица для обоснования решений в энергетике в условиях неопределенности // Известия РАН. Сер. Энергетика. 2001. № 4. С. 164–173..
Райфа Х. Анализ решений: введение в проблему выбора в условиях неопределенности. М.: Наука, 1977. 418 с.
Синяк Ю.В., Куликов А.П. Два подхода к оценке перспективных цен на нефть и газ и потенциальной природной ренты в России // Проблемы прогнозирования. 2005. № 5. С. 96–120.
Успенская И.Г. Современные проблемы прогнозирования энергопотребления региона (на примере Республики Коми) // Проблемы прогнозирования. 2009. № 5. С. 120–133.
Филиппов С.П. Прогнозирование энергопотребления с использованием комплекса адаптивных имитационных моделей // Известия РАН. Сер. Энергетика. 2010. № 4. С. 41–55.